A Result in Best Approximation Theory

S. A. SAHAB* AND M. S. KHAN*

King Abdul Aziz University, Faculty of Science, Department of Mathematics, Jeddah, Saudi Arabia

AND

S. Sessa

Università di Napoli, Facoltà di Architettura, Istituto Matematico, 80134 Napoli, Italy

Communicated by E. W. Cheney

Received September 26, 1986

Using a fixed-point theorem of G. Jungck [Math. Mag. 49, No. 1 (1976), 32-34], we generalize a result of S. P. Singh [J. Approx. Theory 25 (1979), 84-90] on best approximation. © 1988 Academic Press, Inc.

Let X be a normed linear space. A mapping $T: X \to X$ is contractive on X (resp. on a subset C of X) if $||Tx - Ty|| \le ||x - y||$ for all x, y in X (resp. C). The set of fixed points of T in X is denoted by F(T). If \bar{x} is a point of X, the set D of best C-approximants to \bar{x} consists of the points y in C such that $||y - \bar{x}|| = \inf\{||z - \bar{x}|| : z \in C\}$. A subset C of X is said to be starshaped with respect to a point $q \in C$ if, for all x in C and all $\lambda, 0 \le \lambda \le 1$, $\lambda x + (1 - \lambda)q$ is in C. A convex set is starshaped with respect to each of its points.

Singh [5], relaxing the linearity of the operator T and the convexity of D in the original statement of the well-known result of Brosowski [1], proved the following

THEOREM 1. Let $T: X \to X$ be a contractive operator on X. Let C be a T-invariant subset of X and let $\bar{x} \in F(T)$. If $D \subseteq X$ is nonempty, compact, and starshaped, then $D \cap F(T) \neq \emptyset$.

Singh [6] observed that only the nonexpansiveness of T on $D' = D \cup \{\bar{x}\}$ is necessary. Further, Hicks and Humphries [2] stressed that

^{*} The work of this author was supported by a research grant.

a point $y \in D$ is not necessarily in the interior of C, i.e., $y \in \partial C$. Then the assumption $T: C \to C$ can be weakened to the condition $T: \partial C \to C$.

In the current terminology of fixed-point theory, a contractive operator is called nonexpansive. Park [4], relativizing the concept of nonexpansiveness of T with respect to another mapping $I: X \to X$, introduced the inequality

$$\|Tx - Ty\| \le \|Ix - Iy\| \tag{1}$$

for all x, y in X. Of course, T is continuous whenever I is continuous. Jungck [3] proved that

THEOREM 2. Let (X, d) be a compact metric space and $T, I: X \to X$ be two commuting mappings such that $T(X) \subseteq I(X)$, I is continuous, and d(Tx, Ty) < d(Ix, Iy) whenever $Ix \neq Iy$. Then $F(T) \cap F(I)$ is singleton.

By using this theorem, we generalize Theorem 1 with the following result.

THEOREM 3. Let $T, I: X \to X$ be operators, C be a subset of X such that $T: \partial C \to C$, and $\bar{x} \in F(T) \cap F(I)$. Further, T and I satisfy (1) for all x, y in D' and let I be linear, continuous on D, and ITx = TIx for all x in D. If D is nonempty, compact and starshaped with respect to a point $q \in F(I)$ and if I(D) = D, then $D \cap F(T) \cap F(I) \neq \emptyset$.

Proof. Let $y \in D$ and hence Iy is in D since I(D) = D. Further, $y \in \partial C$ and then Ty is in C since $T(\partial C) \subseteq C$. From (1), it follows that

$$||Ty - \bar{x}|| = ||Ty - T\bar{x}|| \le ||Iy - I\bar{x}|| = ||Iy - \bar{x}||$$

and therefore Ty is in D. Thus T maps D into itself.

Let $\{k_n\}$ be a sequence of real numbers such that $0 \le k_n < 1$ and converging to 1. Define a sequence $\{T_n\}$ of mappings by putting

$$T_n x = k_n \cdot T x + (1 - k_n) \cdot q$$

for all x in D and for each n. Since D is starshaped with respect to q, we have that T_n maps D into itself for each n. Since I is linear and commutes with T on D, we have

$$T_n Ix = k_n \cdot TIx + (1 - k_n) \cdot Iq = k_n \cdot ITx + (1 - k_n) \cdot Iq$$
$$= I(k_n \cdot Tx + (1 - k_n) \cdot q) = IT_n x$$

for all x in D. Thus I commutes with T_n on D for each n and $T_n(D) \subseteq D = I(D)$. Further, we have that

$$||T_n x - T_n y|| = k_n \cdot ||Tx - Ty|| \le k_n \cdot ||Ix - Iy|| < ||Ix - Iy||$$

whenever $Ix \neq Iy$. Since D is compact and I is continuous, we deduce that $F(T_n) \cap F(I) = \{x_n\}$ for each n by Theorem 2. Once again the compactness of D ensures that $\{x_n\}$ has a convergent subsequence $\{x_{n(i)}\}$ to a point z in D. Since

$$x_{n(i)} = T_{n(i)} x_{n(i)} = k_{n(i)} \cdot T x_{n(i)} + (1 - k_{n(i)}) \cdot q$$

and T is continuous, we have, as $i \to \infty$, that z = Tz, i.e., $z \in D \cap F(T)$. Further, the continuity of I implies that

$$Iz = I(\lim_{i \to \infty} x_{n(i)}) = \lim_{i \to \infty} Ix_{n(i)} = \lim_{i \to \infty} x_{n(i)} = z,$$

i.e., $z \in F(I)$ and therefore the thesis.

Of course, Theorem 1 is a consequence of Theorem 3 assuming I = identity on X.

References

- 1. B. BROSOWSKI, Fixpunktsatze in der Approximations-theorie, Mathematica (Cluj) 11 (1969), 195-220.
- 2. T. L. HICKS AND M. D. HUMPHRIES, A note on fixed point theorems, J. Approx. Theory 34 (1982), 221-225.
- 3. G. JUNGCK, An iff fixed point criterion, Math. Mag. 49, No. 1 (1976), 32-34.
- 4. S. PARK, Fixed points of *f*-contractive maps, *Rocky Mountain J. Math.* 8, No. 4 (1978), 743-750.
- 5. S. P. SINGH, An application of a fixed point theorem to approximation theory, J. Approx. Theory 25 (1979), 89-90.
- S. P. SINGH, Applications of fixed point theorems in approximation theory, in "Applied Nonlinear Analysis" (V. Lakshmikantham, Ed.), pp. 389–397, Academic Press, New York, 1979.