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Using a fixed-point theorem ofG. Jungck [Math. Mag. 49, No.1 (1976),32-34],
we generalize a result of S. P. Singh [J. Approx. Theory 25 (1979), 84-90] on best
approximation. © \988 Academic Press, Inc.

Let X be a normed linear space. A mapping T: X -+ X is contractive on
X (resp. on a subset C of X) if II Tx - Tyll ~ Ilx - YII for all x, Y in X
(resp. C). The set of fixed points of T in X is denoted by F(T). If x is a
point of X, the set D of best C-approximants to x consists of the points y
in C such that lIy - xII = inf{ liz - xii: zE C}. A subset C of X is said to be
starshaped with respect to a point q E C if, for all x in C and all A., 0 ~ A. ~ 1,
Ax + (1 - A.) q is in C. A convex set is starshaped with respect to each of its
points.

Singh [5], relaxing the linearity of the operator T and the convexity of
D in the original statement of the well-known result of Brosowski [1],
proved the following

THEOREM 1. Let T: X -+ X be a contractive operator on X. Let C be a
T-invariant subset of X and let xE F( T). If D ~ X is nonempty, compact, and
starshaped, then D n F( T) # 0.

Singh [6] observed that only the nonexpansiveness of T on
D' = D u {x} is necessary. Further, Hicks and Humphries [2J stressed that
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a point yE D is not necessarily in the interior of C, i.e., yE ac. Then the
assumption T: C -+ C can be weakened to the condition T: ac -+ C.

In the current terminology of fixed-point theory, a contractive operator
is called nonexpansive. Park [4], relativizing the concept of nonexpan
siveness of T with respect to another mapping I: X -+ X, introduced the
inequality

IITx- Tyll ~ IIIx-Iyll

for all x, y in X. Of course, T is continuous whenever I is continuous.
Jungck [3] proved that

(1 )

THEOREM 2. Let (X, d) be a compact metric space and T,I: X -+ X be
two commuting mappings such that T(X) £; I(X), I is continuous, and
d( Tx, Ty) < d(lx, Iy) whenever Ix"" Iy. Then F( T) n F(l) is singleton.

By using this theorem, we generalize Theorem 1 with the following
result.

THEOREM 3. Let T, I: X -+ X be operators, C be a subset of X such that
T: ac -+ C, and x E F( T) n F(l). Further, T and I satisfy (1) for all x, y in D'
and let I be linear, continuous on D, and ITx = Tlx for all x in D. If D is
nonempty, compact and starshaped with respect to a point q E F(l) and if
I(D) =D, then D n F(T) n F(l) "" 0.

Proof Let y E D and hence Iy is in D since I(D) = D. Further, y E ac
and then Ty is in C since T(aC) £; C. From (1), it follows that

II Ty - xii = II Ty - Txll ~ Illy - Ixll = Illy - xii

and therefore Ty is in D. Thus T maps D into itself.
Let {k n } be a sequence of real numbers such that 0 ~ kn < 1 and

converging to 1. Define a sequence {Tn} of mappings by putting

Tnx=kn · Tx+ (1-kn)·q

for all x in D and for each n. Since D is starshaped with respect to q, we
have that Tn maps D into itself for each n. Since I is linear and commutes
with Ton D, we have

Tnlx=kn · TIx + (1-kn) ·Iq =kn · ITx+ (1-k n) ·Iq

= I(kn · Tx + (1- k n)· q) = ITnx

for all x in D. Thus I commutes with Tn on D for each nand
TAD) £; D = I(D). Further, we have that

IITnx- Tnyll =kn ·IITx- Tyll ~kn ·IIIx-Iyll < IIIx-Iyll
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whenever Ix -# Iy. Since D is compact and I is continuous, we deduce that
F( Tn) !l F(I) = {xn} for each n by Theorem 2. Once again the compactness
of D ensures that {xn} has a convergent subsequence {xn(i)} to a point z in
D. Since

and T is continuous, we have, as i -+ 00, that z = Tz, i.e., ZED!l F( T).
Further, the continuity of I implies that

Iz = I( lim xn(i) = lim IXn(i) = lim xn(i) = Z,
i----+oo 1-+00 i-IX:

i.e., Z E F(I) and therefore the thesis.

Of course, Theorem 1 is a consequence of Theorem 3 assuming 1=
identity on X.
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